Dielectric properties of the hydrogen-bonded material, 5-bromo-9-hydroxyphenalenone (C(13)H(7)O(2)Br; BrHPLN), are investigated theoretically by means of electronic structure calculations and Monte Carlo simulations. The density functional calculations of BrHPLN crystals have revealed that the polarization per one molecule can be about 1.7 times larger than that of the isolated monomer. It is also found that there exists significant electron density (0.01 e bohr(-3)) in an intermolecular C-H···O region, which, together with the interatomic distances of 2.39 Å for H···O and 3.34 Å for C···O, suggests the existence of intermolecular weak hydrogen bonding that may enhance the molecular polarization. The induced polarization effects in various intermolecular configurations are evaluated with the Fragment Molecular Orbital method. In addition to the π-π stacking interactions, two types of "in plane" intermolecular weak hydrogen-bonding configurations are found to affect the molecular dipole moment most significantly. These effects are efficiently included in a Monte Carlo simulation method in terms of "dipole corrections" as functions of both the intermolecular arrangements and the intramolecular proton configurations. The application to the dielectric phase transition of a BrHPLN crystal shows that the dipole corrections almost double the transition temperature, toward better agreement with experiments, and qualitatively affect the temperature dependence of the dielectric constant. Discussions are given to support that the results will remain adequate and consistent even after explicit inclusion of the quantum tunneling effects.