2024
DOI: 10.1039/d3dt02051g
|View full text |Cite
|
Sign up to set email alerts
|

Low-temperature synergistic effect of MA and Cl towards high-quality α-FAPbI3 films for humid-air-processed perovskite solar cells

Hao Gao,
Minghui Zhang,
Zicong Xu
et al.

Abstract: Due to the hydrophilicity and black-phase instability of FA perovskites, ambient humidity is an unavoidable issue in the processing of perovskite solar cells (PSCs). MACl is among the most popular...

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 65 publications
(116 reference statements)
0
1
0
Order By: Relevance
“…Organic–inorganic hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their unique semiconductor properties, such as long charge carrier diffusion length, tunable bandgap, high defect tolerance, and low exciton binding energies. Within a very short time span, impressive achievements in photovoltaic applications have been made, and the certificated power conversion efficiency (PCE) of single-junction PSCs has been rapidly increased to 26.1%, which is comparable to that of Si-based solar cells. However, the poor long-term operational stability still restricts their practical application, largely because of the usage of humidity-/heat-sensitive organic methylammonium and formamidinium. Substituting organic cations with volatile-free Cs + to fabricate all-inorganic perovskites (CsPbX 3 , X = I, Br, Cl, or mixed) is an effective strategy to settle this issue. , Generally, there is a positive correlation between I doge and corresponding PCE owing to the reduced bandgap but a negative relationship for environmental stability. Although the efficiency of CsPbI 3 -based PSCs has exceeded 20%, the phase instability, which suffers from the phase conversion from the photoactive α-perovskite phase to the nonphotoactive β-perovskite phase, is still a great challenge for future deployment. ,, On the contrary, CsPbBr 3 exhibits the most superior stability, but its PCE is restricted by a narrower light-absorbing range .…”
Section: Introductionmentioning
confidence: 99%
“…Organic–inorganic hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their unique semiconductor properties, such as long charge carrier diffusion length, tunable bandgap, high defect tolerance, and low exciton binding energies. Within a very short time span, impressive achievements in photovoltaic applications have been made, and the certificated power conversion efficiency (PCE) of single-junction PSCs has been rapidly increased to 26.1%, which is comparable to that of Si-based solar cells. However, the poor long-term operational stability still restricts their practical application, largely because of the usage of humidity-/heat-sensitive organic methylammonium and formamidinium. Substituting organic cations with volatile-free Cs + to fabricate all-inorganic perovskites (CsPbX 3 , X = I, Br, Cl, or mixed) is an effective strategy to settle this issue. , Generally, there is a positive correlation between I doge and corresponding PCE owing to the reduced bandgap but a negative relationship for environmental stability. Although the efficiency of CsPbI 3 -based PSCs has exceeded 20%, the phase instability, which suffers from the phase conversion from the photoactive α-perovskite phase to the nonphotoactive β-perovskite phase, is still a great challenge for future deployment. ,, On the contrary, CsPbBr 3 exhibits the most superior stability, but its PCE is restricted by a narrower light-absorbing range .…”
Section: Introductionmentioning
confidence: 99%