Limbless organisms like snakes can navigate nearly all terrain. In particular, desert-dwelling sidewinder rattlesnakes (C. cerastes) operate effectively on inclined granular media (like sand dunes) that induce failure in field-tested limbless robots through slipping and pitching. Our laboratory experiments reveal that as granular incline angle increases, sidewinder rattlesnakes increase the length of their body in contact with the sand. Implementing this strategy in a physical robot model of the snake enables the device to ascend sandy slopes close to the angle of maximum slope stability. Plate drag experiments demonstrate that granular yield stresses decrease with increasing incline angle. Together these three approaches demonstrate how sidewinding 1 arXiv:1410.2945v1 [physics.bio-ph] 11 Oct 2014 with contact-length control mitigates failure on granular media.The majority of terrestrial mobile robots are restricted to laboratory environments, in part because such robots are designed to roll on hard flat surfaces. It is difficult to systematically improve such terrestrial robots because we lack understanding of the physics of interaction with complex natural substrates like sand, dirt and tree bark. We are thus limited in our ability to computationally explore designs for potential all-terrain vehicles; in contrast, many of the recent developments in aerial and aquatic vehicles have been enabled by sophisticated computationaldynamics tools that allow such systems to be designed in silico (1).Compared with human-made devices, organisms such as snakes, lizards, and insects move effectively in nearly all natural environments. In recent years, scientists and engineers have sought to systematically discover biological principles of movement and implement these in robots (2). This "bioinspired robotics" approach (3) has proved fruitful to design laboratory robots with new capabilities (new gaits, morphologies, control schemes) including rapid running (2, 4), slithering (5), flying (6), and swimming in sand (7). Fewer studies have transferred biological principles into robust field-ready devices (4, 8) capable of operating in, and interacting with, natural terrain.Limbless locomotors like snakes are excellent systems to study to advance real-world allterrain mobility. Snakes are masters of most terrains: they can move rapidly on land (9, 10) and through water (11), burrow and swim through sand and soil (12), slither through tiny spaces (13), climb complex surfaces (14), and even glide through the air (15). Relative to legged locomotion, limbless locomotion is less studied, and thus broad principles which govern multi-environment movement are lacking. Recently developed limbless robotic platforms (5), based generally on the snake body plan, are appealing for multi-functional robotics study because they are also capable of a variety of modes of locomotion. These robots can traverse confined spaces, climb trees and pipes, and potentially dive through loose material. However, 2 the gaits that carry these robots across fir...