Complex materials that change their optical properties in response to changes in environmental conditions can find applications in displays, smart windows, and optical sensors. Here a class of biphasic composites with stimuli-adaptive optical transmittance is introduced. The biphasic composites comprise aqueous droplets (a mixture of water, glycerol, and surfactant) embedded in an elastomeric matrix. The biphasic composites are tuned to be optically transparent through a careful match of the refractive indices between the aqueous droplets and the elastomeric matrix. We demonstrate that stimuli (e.g., salinity and temperature change) can trigger variations in the optical transmittance of the biphasic composite. The introduction of such transparency-changing soft matter with liquid inclusions offers a novel approach to designing advanced optical devices, optical sensors, and metamaterials.