Abstract:The research significance of various scientific aspects of photovoltaic (PV) systems has increased over the past decade. Grid-tied inverters the vital elements for the effective interface of Renewable Energy Resources (RER) and utility in the distributed generation system. Currently, Single-Phase Transformerless Grid-Connected Photovoltaic (SPTG-CPV) inverters (1-10 kW) are undergoing further developments, with new designs, and interest of the solar market. In comparison to the transformer (TR) Galvanic Isolation (GI)-based inverters, its advantageous features are lower cost, lighter weight, smaller volume, higher efficiency, and less complexity. In this paper, a review of SPTG-CPV inverters has been carried out. The basic operational principles of all SPTG-CPV inverters are presented in details for positive, negative, and zero cycles. A comprehensive analysis of each topology has been deliberated. A comparative assessment is also performed based on weaknesses, strengths, component ratings, efficiency, total harmonic distortion (THD), semiconductor device losses, and leakage current of various SPTG-CPV inverters schemes. Typical PV inverter structures and control schemes for grid connected three-phase system and single-phase systems are also discussed, described, and reviewed. Comparison of various industrial grids-connected PV inverters is also performed. Loss analysis is also performed for various topologies at 1 kW. Selection of appropriate topologies for their particular application is thoroughly presented. Then, discussion and forthcoming progress are emphasized. Lastly, the conclusions are presented. More than 100 research publications on the topic of SPTG-CPV inverter topologies, configurations, and control schematics along with the recent developments are thoroughly reviewed and classified for quick reference.