At 30-50 K, the temperatures typical for surfaces in the Kuiper Belt (e.g. Stern & Trafton 2008), only seven species have sublimation pressures higher than 1 nbar (Fray & Schmitt 2009): Ne, N 2 , CO, Ar, O 2 , CH 4 , and Kr. Of these, N 2 , CO, and CH 4 have been detected or inferred on the surfaces of Trans-Neptunian Objects (TNOs). The presence of tenuous atmospheres above these volatile ices depends on the sublimation pressures, which are very sensitive to the composition, temperatures, and mixing states of the volatile ices. Therefore, the retention of volatiles on a TNO is related to its formation environment and thermal history. The surface volatiles may be transported via seasonally varying atmospheres and their condensation might be responsible for the high surface albedos of some of these bodies. The most sensitive searches for tenuous atmospheres are made by the method of stellar occultation, which have been vital for the study of the atmospheres of Triton and Pluto, and has to-date placed upper limits on the atmospheres of 11 other bodies. The recent release of the Gaia astrometric catalog has led to a "golden age" in the ability to predict TNO occultations in order to increase the observational data base.