Recent studies on grasses and sedges suggest that the induction of a mechanism reducing digestibility of plant tissues in response to herbivore damage may drive rodent population cycles. This defence mechanism seems to rely on the abrasive properties of ingested plants. However, the underlying mechanism has not been demonstrated in small wild herbivores. Therefore, we carried out an experiment in which we determined the joint effect of abrasive sedge components on the histological structure of small intestine as well as resting metabolic rate (RMR) of the root vole (Microtus oeconomus). Histological examination revealed that voles fed with a sedgedominated diet had shorter villi composed from narrower enterocytes in duodenum, jejunum and ileum. Reduction in the height of villi decreased along the small intestine. Activity of the mucus secretion increased along the small intestine and was significantly higher in the ileum. The intestinal abrasion exceeded the compensatory capabilities of voles, which responded to a sedge-dominated diet by a reduction of body mass and a concomitant decrease in whole body RMR. These results explain the inverse association between body mass and the probability of winter survival observed in voles inhabiting homogenous sedge wetlands.
KEY WORDS: Body mass, Plant defensive mechanism, Sedges, Silicon, Small intestine
INTRODUCTIONGrasses and sedges dominate many terrestrial ecosystems and are the food base for numerous cyclical populations of small herbivores. This plant food contains a high concentration of silicon (Hodson et al., 2005), which together with fibre (Vincent, 1982;Grzelak et al., 2011), increases its abrasive properties (Montagne et al., 2003;. The abrasive properties of this plant food have been proposed as an anti-herbivore defence mechanism (Massey et al., 2008). Our previous studies showed that changes in the silicon concentration in fibrous tussock sedge (Carex appropinquata Schumacher 1801) were induced by a high density of cyclical population of the root voles (Microtus oeconomus Pallas 1776) at the end of the previous summer. We also found that smaller (lighter) voles were characterised by lower mortality during early winter Zub et al., 2014), which might be correlated with the low quality of their food base. However, the underlying proximate mechanism promoting smaller individuals is not known. Low body mass of voles feeding on a highly silicated and fibrous diet (Massey et al., 2008) may reflect the need to reduce absolute energy requirements (Ergon et al., 2004), to bring them into line with reduced digestive efficiency . This efficiency may be compromised because of a reduction of the intestinal surface and its function of nutrient absorption, stemming from the mechanical abrasion of the apex of villi where the widest mature enterocytes, which produce digestive enzymes, are located (Montagne et al., 2003;Abbas et al., 1989;Barker et al., 2008). However, as far as we know the above putative mechanism has not yet been demonstrated in the context of the ...