2024
DOI: 10.1007/s11856-024-2702-1
|View full text |Cite
|
Sign up to set email alerts
|

Lower semi-continuity of Lagrangian volume

Erman Çınelı,
Viktor L. Ginzburg,
Başak Z. Gürel

Abstract: We study lower semi-continuity properties of the volume, i.e., the surface area, of a closed Lagrangian manifold with respect to the Hofer- and γ-distance on a class of monotone Lagrangian submanifolds Hamiltonian isotopic to each other. We prove that volume is γ-lower semi-continuous in two cases. In the first one the volume form comes from a Kähler metric with a large group of Hamiltonian isometries, but there are no additional constraints on the Lagrangian submanifold. The second one is when the volume is t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?