Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)‐17‐induced inflammatory injury in ATDC5 cells. CCK‐8 and migration assays were used to detect the functions of IL‐7, BIL, and microRNA (miR)‐125a on cell viability and migration. The miR‐125a level was changed by transfection, and tested by real‐time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL‐6 and tumor necrosis factor‐α), matrix metalloproteinases (MMPs), and pathway‐related proteins. Moreover, the enzyme‐linked immunosorbent assay also was used to detect inflammatory factor levels. IL‐7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL‐17‐induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR‐125a, and the miR‐125a mimic could partly reverse the effects of BIL on IL‐17‐injury. Finally, we showed that BIL inhibited the c‐Jun N‐terminal kinase (JNK) and nuclear factor kappa B (NF‐κB) pathways, and the miR‐125a mimic had the opposite effect. BIL inhibited IL‐17‐induced inflammatory injury in ATDC5 cells by downregulation of miR‐125a via JNK and NF‐κB signaling pathways.