The Tree Augmentation Problem (TAP) is a fundamental network design problem in which we are given a tree and a set of additional edges, also called links. The task is to find a set of links, of minimum size, whose addition to the tree leads to a 2-edge-connected graph. A long line of results on TAP culminated in the previously best known approximation guarantee of 1.5 achieved by a combinatorial approach due to Kortsarz and Nutov [ACM Transactions on Algorithms 2016], and also by an SDP-based approach by Cheriyan and Gao [Algorithmica 2017]. Moreover, an elegant LP-based (1.5 + ǫ)-approximation has also been found very recently by Fiorini, Groß, Könemann, and Sanitá [SODA 2018]. In this paper, we show that an approximation factor below 1.5 can be achieved, by presenting a 1.458-approximation that is based on several new techniques.By extending prior results of Adjiashvili [SODA 2017], we first present a black-box reduction to a very structured type of instance, which played a crucial role in recent development on the problem, and which we call k-wide. Our main contribution is a new approximation algorithm for O(1)-wide tree instances with approximation guarantee strictly below 1.458, based on one of their fundamental properties: wide trees naturally decompose into smaller subtrees with a constant number of leaves. Previous approaches in similar settings rounded each subtree independently and simply combined the obtained solutions. We show that additionally, when starting with a well-chosen LP, the combined solution can be improved through a new "rewiring" technique, showing that one can replace some pairs of used links by a single link. We can rephrase the rewiring problem as a stochastic version of a matching problem, which may be of independent interest. By showing that large matchings can be obtained in this problem, we obtain that a significant number of rewirings are possible, thus leading to an approximation factor below 1.5.