Alkaline stress can induce significant injury to plants, resulting in a range of negative effects, including ion toxicity, oxidative stress, and damage from high pH values. These stress factors can substantially affect normal plant growth and development, as well as yield and quality loss. To counteract alkaline stress, plants have developed a range of defense strategies, enabling them to adapt and thrive in challenging environments. These defense mechanisms operate at multiple levels such as morphological, physiological, biochemical, and molecular. The continuous advancement of genetic engineering has enabled significant breakthroughs in enhancing plant alkali resistance through human intervention. This research provides a scientific basis for crop production and ecological environment construction, and also promotes the effective development and utilization of saline-alkali lands, improving the sustainability of agricultural production.