The enzyme acyl-CoA:lysophosphatidylcholine acyltransferase (Lpcat1) is a critical cytosolic enzyme needed for lung surfactant synthesis that catalyzes an acyltransferase reaction by adding a palmitate to the sn-2 position of lysophospholipids. Here we report that histone H4 protein is subject to palmitoylation catalyzed by Lpcat1 in a calcium-regulated manner. The enzyme acyl-CoA:lysophosphatidylcholine acyltransferase (Lpcat1) was recently cloned from lung epithelia and is indispensable for generation of pulmonary surfactant. Lpcat1 catalyzes an O-acyltransferase reaction by covalently adding saturated acyl-CoAs (palmitoyl groups, 16:0) to its acceptor lysophospholipids. Specifically, in the lung, it catalyzes an oxyester linkage between palmitate and lysophosphatidylcholine to generate dipalmitoylphosphatidylcholine, the major surface tension-lowering component of pulmonary surfactant in the remodeling pathway (1, 2). However, Lpcat1 appears to be somewhat promiscuous and acts on substrates that include lysophosphatidylcholine, lysoplasmanylcholine, and lysophosphatidylglycercol (1-3). Notably, in addition to lipid substrates, O-acyltransferases can also lipidate some protein substrates (4 -7). These enzymes share a highly conserved histidine residue within a catalytic core that is essential for their functionality.Protein palmitoylation, a prototypical form of lipidation, is an important post-translational modification that occurs ubiquitously in eukaryotes. Protein palmitoylation is generally categorized as S-palmitoylation, N-palmitoylation, and O-palmitoylation based on the chemical linkage between donor and acceptor substrates. Among these, S-palmitoylation is best characterized and involves generation of a reversible thioester bond between a cysteine residue and a palmitate group (8). As many as 250 proteins were found to be modified by S-palmitoylation in mammalian neurons, and these reactions are largely catalyzed by aspartate-histidine-histidine-cysteine (DHHC) palmitoyl acyltransferase family members (8, 9). The biochemistry of N-palmitoylation and O-palmitoylation, however, is less studied. One known substrate for N-palmitoylation is the Sonic Hedgehog protein because its NH 2 -terminal cysteine is palmitoylated via an amide linkage by Hedgehog acyltransferase (Hhat) (5). O-Palmitoylation is exemplified by Wnt/Wg proteins that harbor an oxyester linkage between monounsaturated palmitate and a serine residue. Another recently described O-palmitoylation target, the peptide hormone preghrelin, is modified by octanoylation at a serine residue. The enzymes that catalyze the oxyester linkages within Wnt/Wg proteins and preghrelin are porcupine (6) and ghrelin O-acyltransferase (7), respectively. The physiological consequences of palmitoylation are diverse; by increasing substrate hydrophobicity, these lipidation reactions appear to modulate interactions of substrates with other biomolecules, often affecting signal transduction, protein stability, intracellular trafficking, and localization (10 -12).Histo...