2015 IEEE International Conference on Control System, Computing and Engineering (ICCSCE) 2015
DOI: 10.1109/iccsce.2015.7482187
|View full text |Cite
|
Sign up to set email alerts
|

LQR, double-PID and pole placement stabilization and tracking control of single link inverted pendulum

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
3

Year Published

2018
2018
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(7 citation statements)
references
References 14 publications
0
4
0
3
Order By: Relevance
“…Using above relation and from the nonlinear Equations (1) and (2) we obtained linearized equations of the proposed system as in (3) and (4). Note that U has been substituted for the input force F. To obtain the transfer functions of the linearized system equations, we must first take the Laplace transform of the system equation assuming zero initial conditions.…”
Section: Research Methods 21 Mathematical Model Of the Cart Invertedmentioning
confidence: 99%
See 1 more Smart Citation
“…Using above relation and from the nonlinear Equations (1) and (2) we obtained linearized equations of the proposed system as in (3) and (4). Note that U has been substituted for the input force F. To obtain the transfer functions of the linearized system equations, we must first take the Laplace transform of the system equation assuming zero initial conditions.…”
Section: Research Methods 21 Mathematical Model Of the Cart Invertedmentioning
confidence: 99%
“…Moreover, inverted pendulum system is widely used in the field of robotics and aerospace field, and so has essential significance both in the field of the theoretical study research and practice [1]- [3]. There are a lot of researchers about most popular types inverted pendulums such as the rotational single arm pendulum, the cart inverted pendulum, and the double inverted investigated the inverted pendulum by switching two different control laws [3], and in [4] LQR, double-PID and pole placement control techniques are used to control a cart inverted pendulum system. Moreover, fractional order PID controllers are proposed in [5] and [6] for control of the inverted pendulum system.…”
Section: Introductionmentioning
confidence: 99%
“…The nature of this inverted pendulum system makes the researchers make this system the choice of a test or benchmark tool for testing many control techniques since the 1973s to the present [1][2]. The PID control [3][4][5][6], fuzzy genetic algorithm [7][8][9][10], state-space control with pole placement methods [11][12][13], linear quadratic regulator (LQR) [14][15][16], linear quadratic gaussian (LQG) [17][18][19][20], observer [21][22][23], NCTL [24], flower pollination [25], and others have been used in this system.…”
Section: Introductionmentioning
confidence: 99%
“…A resposta transitória aprimorada ou a estabilidade de um sistema naturalmente instável, pode ser alcançada pelo posicionamento de polos de malha fechada (pCL) na metade esquerda do plano do complexo s (SARKAR; DEWAN, 2017). Esse tipo de abordagem é chamado de realimentação de estado completo (full state feedback -FSF) ou controlador de posicionamento de polos (pole placement -PP) (SHEHU et al, 2016). A representação em espaço de estados de um sistema é dada pela equação (1).…”
Section: Controlador Linear Por Alocação De Polosunclassified
“…Várias estratégias de controle têm sido estudadas com sistemas dinâmicos (AGUILAR-AVELAR; MORENO-VALENZUELA, 2016; HAMZA et al, 2019; PARK; KIM; LEE, 2011). O método de controle por alocação de polos (pole placement -PP), também chamado de retroalimentação de estado completo (full state feedback -FSF), é muito utilizado pois permite uma relação clara entre os parâmetros ajustados e o comportamento do controlador resultante (HALICIOĞLU; ÖKSÜZ, 2018; SARKAR;DEWAN, 2017a;SHEHU et al, 2016). Outra técnica poderosa é chamada de regulador quadrático linear (linear quadratic regulator -LQR), que busca valores ótimos de controlador para uma função de custo mínimo (KUMAR; JEROME, 2013) e que tem sido aplicado com sucesso ao pêndulo invertido (SUBRAMANIAN;ELUMALAI, 2016;HAMZA et al, 2019).…”
unclassified