Viruses with an RNA genome are the main causes of zoonotic infections. In order to identify novel pro-viral host cell factors, we screened a haploid insertion-mutagenized mouse embryonic cell library for clones that rendered them resistant to the zoonotic Rift Valley fever virus (RVFV; family Phleboviridae, order Bunyavirales). This screen returned the Low Density Lipoprotein Receptor-Related protein 1 (LRP1, or CD91) as top hit, a 600 kDa plasma membrane protein known to be involved in a wide variety of cell activities. Inactivation of LRP1 expression in human cells reduced RVFV infection at the early stages of infection, including the particle attachment to the cell. In the highly LRP1-positive human HuH-7 cell line, LRP1 was required for the early infection stages also of Sandfly fever Sicilian virus (SFSV; family Phleboviridae, order Bunyavirales), vesicular stomatitis (VSV; family Rhabdoviridae, order Mononegavirales), Encephalomyocarditis virus (EMCV, family Picornaviridae), and the coronaviruses MERS-CoV, SARS-CoV-1, and SARS-CoV-2. While for RVFV, EMCV, and MERS-CoV the replication cycle could eventually catch up, LRP1 requirement for the late infection stage in HuH-7 cells was observed for SFSV, La Crosse virus (LACV; family Peribunyaviridae, order Bunyavirales), VSV, SARS-CoV-1, and SARS-CoV-2. For SARS-CoV-2, the absence of LRP1 stably reduced viral RNA levels in human lung Calu-3 cells, and both RNA levels and particle production in the hepatic HuH-7 cells. Thus, we identified LRP1 as a host factor that supports various infection cycle stages of a broad spectrum of RNA viruses.