This article presents a collision model that predicts vehicle motions after a light impact. The focus of this work is on the characterisation of changes in vehicle kinematic states due to the impact; hence detailed analysis of vehicle component deformations is disregarded. Colliding vehicles are each modelled as rigid bodies with four degrees of freedom (longitudinal, lateral, yaw, and roll), which is different from the approach commonly used in the literature. The energy loss during impacts is accounted for through an empirical coefficient of restitution. In contrast to the conventional momentum-conservation-based method, the proposed approach takes tyre forces into account. Improved model prediction accuracy is demonstrated through numerical examples. The developed collision model is useful for the prediction of post-impact vehicle dynamics and the development of enhanced vehicle safety systems.