“…A key motivation for many applications of ML and AI to astronomical data is the need to prepare for the data streams expected from near-term observatories and space missions. The Large Synoptic Survey Telescope (Ivezi c et al, 2019;LSST Science Collaboration and LSST Project, 2009); the Euclid satellite (Amendola et al, 2013;Laureijs et al, 2011); MeerKAT (Booth, de Blok, Jonas, & Fanaroff, 2009); the Australian Square Kilometer Array Pathfinder (Johnston et al, 2007(Johnston et al, , 2008; and the Square Kilometer Array (Dewdney, Hall, Schilizzi, & Lazio, 2009), among others, will all generate datasets on scales (volumes and velocities) that vastly exceed the discovery capabilities of humans. In the interim, the SDDS (Abazajian et al, 2009;Stoughton et al, 2002;York et al, 2000), the Panoramaic Survey Telescope and Rapid Response System (Kaiser, 2004), the Catalina Real-Time Transient Survey (CRTS; Drake et al, 2009;Mahabal et al, 2011) and the Zwicky Transient Facility (ZTF; Bellm et al, 2019), the Kilo Degree Survey (KiDS; de Jong, Verdoes Kleijn, Kuijken, & Valentijn, 2013), and the Fornax Deep Survey (Iodice et al, 2016), both using the VLT Survey Telescope, 9 LOFAR (van Haarlem et al, 2013), the Solar Dynamic Observatory (SDO; Lemen et al, 2012;Pesnell, Thompson, & Chamberlin, 2012), the Kepler Planet-Detection Mission (Borucki et al, 2010), and the GAIA space mission (Gaia Collaboration, Gaia Collaboration, Prusti, et al, 2016;Gaia Collaboration et al, 2018), are generating data with which ML and AI has enabled classification, regression, forecasting, and discovery, leading to new knowledge and new insights.…”