Germline stem cells (GSCs) in C. elegans are maintained by GLP-1/Notch signaling from the niche and by a downstream RNA regulatory network. Loss of the GLP-1 receptor causes GSCs to precociously undergo meiotic differentiation, the Glp phenotype, due to a failure to self-renew. lst-1 and sygl-1 are functionally redundant direct targets of GLP-1 signaling whose gene products work with PUF RNA binding proteins to promote GSC self-renewal. Whereas single loss-of-function mutants are fertile, lst-1 sygl-1 double mutants are sterile and Glp. We set out to identify genes that function redundantly with either lst-1 or sygl-1 to maintain GSCs. To this end, we conducted forward genetic screens for Glp mutants in genetic backgrounds lacking functional copies of either lst-1 or sygl-1. The screens generated nine glp-1 alleles, two lst-1 alleles, and one allele of pole-1, which encodes the catalytic subunit of DNA polymerase ϵ. Three glp-1 alleles reside in Ankyrin (ANK) repeats not previously mutated. pole-1 single mutants have a low penetrance Glp that is enhanced by loss of either lst-1 or sygl-1. Thus, the screen uncovered one locus that interacts genetically with both lst-1 and sygl-1 and generated useful mutations for further studies of GSC regulation.