To improve the performance of deep learning methods in case of a lack of labeled data for entity annotation in entity recognition tasks, this study proposes transfer learning schemes that combine the character to be the word to convert low-resource data symmetry into high-resource data. We combine character embedding, word embedding, and the embedding of the label features using high- and low-resource data based on the BiLSTM-CRF model, and perform the feature-transfer and parameter-sharing tasks in two domains of the BiLSTM network to annotate with zero resources. Before transfer learning, we must first calculate the label similarity between two different domains and select the label features with large similarity for feature transfer mapping. All training parameters of the source domain in the model are shared during the BiLSTM network processing and CRF layer. In addition, we also use the method of combining characters and words to reduce the problem of word segmentation across domains and reduce the error rate in label mapping. The results of experiments show that in terms of the overall F1 score, the proposed model without supervision was superior by 9.76 percentage points to the general parametric shared transfer learning method, and by 9.08 and 12.38 percentage points, respectively, to two recent high–low resource learning methods. The proposed scheme improves performance in terms of transfer learning between the high- and low-resource data and can identify the predicted data in the target domain.