2019
DOI: 10.48550/arxiv.1912.09003
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

LSTM-TDNN with convolutional front-end for Dialect Identification in the 2019 Multi-Genre Broadcast Challenge

Xiaoxiao Miao,
Ian McLoughlin

Abstract: This paper presents a novel Dialect Identification (DID) system developed for the Fifth Edition of the Multi-Genre Broadcast challenge, the task of Fine-grained Arabic Dialect Identification (MGB-5 ADI Challenge). The system improves upon traditional DNN x-vector performance by employing a Convolutional and Long Short Term Memory-Recurrent (CLSTM) architecture to combine the benefits of a convolutional neural network front-end for feature extraction and a back-end recurrent neural to capture longer temporal de… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?