Soil contamination by metals threatens both the environment and human health and hence requires remedial actions. The conventional approach of removing polluted soils and replacing them with clean soils (excavation) is very costly for low-value sites and not feasible on a large scale. In this scenario, phytoremediation emerged as a promising cost-effective and environmentally-friendly technology to render metals less bioavailable (phytostabilization) or clean up metal-polluted soils (phytoextraction). Phytostabilization has demonstrable successes in mining sites and brownfields. On the other hand, phytoextraction still has few examples of successful applications. Either by using hyperaccumulating plants or high biomass plants induced to accumulate metals through chelator addition to the soil, major phytoextraction bottlenecks remain, mainly the extended time frame to remediation and lack of revenue from the land during the process. Due to these drawbacks, phytomanagement has been proposed to provide economic, environmental, and social benefits until the contaminated site returns to productive usage. Here, we review the evolution, promises, and limitations of these phytotechnologies. Despite the lack of commercial phytoextraction operations, there have been significant advances in understanding phytotechnologies' main constraints. Further investigation on new plant species, especially in the tropics, and soil amendments can potentially provide the basis to transform phytoextraction into an operational metal clean-up technology in the future. However, at the current state of the art, phytotechnology is moving the focus from remediation technologies to pollution attenuation and palliative cares.