Norepinephrine (NE) activates adrenergic receptors (ARs) in the hypothalamic paraventricular nucleus (PVN) to increase excitatory currents, depolarise neurones and, ultimately, augment neuro‐sympathetic and endocrine output. Such cellular events are known to potentiate intracellular calcium ([Ca2+]i); however, the role of NE with respect to modulating [Ca2+]i in PVN neurones and the mechanisms by which this may occur remain unclear. We evaluated the effects of NE on [Ca2+]i of acutely isolated PVN neurones using Fura‐2 imaging. NE induced a slow increase in [Ca2+]i compared to artificial cerebrospinal fluid vehicle. NE‐induced Ca2+ elevations were mimicked by the α1‐AR agonist phenylephrine (PE) but not by α2‐AR agonist clonidine (CLON). NE and PE but not CLON also increased the overall number of neurones that increase [Ca2+]i (ie, responders). Elimination of extracellular Ca2+ or intracellular endoplasmic reticulum Ca2+ stores abolished the increase in [Ca2+]i and reduced responders. Blockade of voltage‐dependent Ca2+ channels abolished the α1‐AR induced increase in [Ca2+]i and number of responders, as did inhibition of phospholipase C inhibitor, protein kinase C and inositol triphosphate receptors. Spontaneous phasic Ca2+ events, however, were not altered by NE, PE or CLON. Repeated K+‐induced membrane depolarisation produced repetitive [Ca2+]i elevations. NE and PE increased baseline Ca2+, whereas NE decreased the peak amplitude. CLON also decreased peak amplitude but did not affect baseline [Ca2+]i. Taken together, these data suggest receptor‐specific influence of α1 and α2 receptors on the various modes of calcium entry in PVN neurones. They further suggest Ca2+ increase via α1‐ARs is co‐dependent on extracellular Ca2+ influx and intracellular Ca2+ release, possibly via a phospholipase C inhibitor‐mediated signalling cascade.