Differential scanning calorimetry (DSC) was used to investigate the isothermal and nonisothermal crystallization kinetics of polyamide11 (PA11)/multiwalled carbon nanotube (MWNTs) composites. The Avrami equation was used for describing the isothermal crystallization behavior of neat PA11 and its nanocomposites. For nonisothermal studies, the Avrami model, the Ozawa model, and the method combining the Avrami and Ozawa theories were employed. It was found that the Avrami exponent n decreased with the addition of MWNTs during the isothermal crystallization, indicating that the MWNTs accelerated the crystallization process as nucleating agent. The kinetic analysis of nonisothermal crystallization process showed that the presence of carbon nanotubes hindered the mobility of polymer chain segments and dominated the nonisothermal crystallization process. The MWNTs played two competing roles on the crystallization of PA11 nanocomposites: on the one hand, the MWNTs serve as heterogeneous nucleating agent promoting the crystallization process of PA11; on the other hand, the MWNTs hinder the mobility of the polymer chains thus retarding the crystal growth process of PA11. The activation energies of PA11/MWNTs composites for the isothermal and nonisothermal crystallization are lower than neat PA11.