Background
The primary goal of this work is to identify biomarkers associated with lung squamous cell carcinoma and assess their potential for early detection of lymph node metastasis.
Methods
This study investigated gene expression in lymph node metastasis of lung squamous cell carcinoma using data from the Cancer Genome Atlas and R software. Protein-protein interaction networks, hub genes, and enriched pathways were analyzed. ZNF334 and TINAGL1, two less explored genes, were further examined through in vitro, ex vivo, and in vivo experiments to validate the findings from bioinformatics analyses. The role of ZNF334 and TINAGL1 in senescence induction was assessed after H2O2 and UV induced senescence phenotype determined using β-galactosidase activity and cell cycle status assay.
Results
We identified a total of 611 up- and 339 down-regulated lung squamous cell carcinoma lymph node metastasis-associated genes (FDR < 0.05). Pathway enrichment analysis highlighted the central respiratory pathway within mitochondria for the subnet genes and the nuclear DNA-directed RNA polymerases for the hub genes. Significantly down regulation of ZNF334 gene was associated with malignancy lymph node progression and senescence induction has significantly altered ZNF334 expression (with consistency in bioinformatics, in vitro, ex vivo, and in vivo results). Deregulation of TINAGL1 expression with inconsistency in bioinformatics, in vitro (different types of lung squamous cancer cell lines), ex vivo, and in vivo results, was also associated with malignancy lymph node progression and altered in senescence phenotype.
Conclusions
ZNF334 is a highly generalizable gene to lymph node metastasis of lung squamous cell carcinoma and its expression alter certainly under senescence conditions.