To study the cytotoxic evaluation, antimicrobial and confocal analysis of zinc oxide nanoparticles (ZnO NPs) obtained from a novel plant product fennel (Foeniculum vulgare Mill.) seed extract (FSE). Methods: ZnO NPs were analyzed using UV-Vis spectroscopy, XRD, FTIR, TEM and EDX techniques. The MTT cell cytotoxicity assay measured the proliferation and survival of MCF-7 cells treated at different concentrations of FSE-derived ZnO NPs. The antimicrobial activity towards pathogenic bacteria and yeast strains was investigated. Results: The UV-Vis spectra showed two peaks at 438 nm and 446 nm, confirming nanoparticle formation. The SEM morphology results showed porous ranging from 23-51 nm. The antitumor activity value (IC 50) was at 50 µg/mL and 100 µg/mL. Besides, morphological changes of MCF-7, cells treated at different concentrations of FSE of ZnO NPs were observed in cell cultures transfected with a transient pCMV6-XL4-GFP-expressing vector containing C-terminal domain GFP-tagged proteins, which resulted in an apoptotic effect. Antimicrobial IZ ranged up No Inhibition to 18.00 ± 0.4. The IZ revealed at the highest concentration was E. faecium VRE and yeast Cryptococcus sp. (18.00 ± 0.4. mm), followed by S. aureus (17.00 ± 0.2 mm) and P. aeruginosa and the yeast C. parapsilosis (16 ± 0.4 mm). The IZ was equal to that caused by the nystatin to Cryptococcus sp., which was significantly highest than ampicillin treatments of S. aureus, P. aeruginosa, C. albicans, and C. parapsilosis. The MIC value of the FSE-derived ZnO NPs tested against E.faecium and C. albicans was 6.00 µg/mL (E. faecium and C. albicans). It was 32.00 µg/mL (S. aureus, S. typhimurium and Cryptococcus sp.), 64.00 µg/mL (P. aeruginosa), and 128 µg/mL (C. parapsilosis). Conclusion: As far as it is to our knowledge, this study established, for the first time, the biological activities of biosynthesized ZnO NPs from FSE and their synergistic therapeutic potential.