Long non-coding RNAs (lncRNAs) play a significant role in multiple human cancers as competing endogenous RNAs (ceRNAs). However, a systematic mRNA-microRNA (miRNA)-lncRNA network linked to kidney renal clear cell carcinoma (KIRC) prognosis has not been described. In this study, we aimed to identify the prognosis-related ceRNA regulatory network and analyzed its relationship with immune cell infiltration to predict KIRC patient survival. The MMP25-AS1/hsa-miR-10a-5p/SERPINE1 ceRNA network related to the prognosis of KIRC was obtained through bioinformatics analysis based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Meanwhile, we constructed a three-gene-based survival predictor model, which could be referential for future clinical research. Methylation analyses suggested that the abnormal upregulation of the SERPINE1 likely resulted from hypomethylation. Furthermore, the immune infiltration analysis showed that the MMP25-AS1/hsa-miR-10a-5p/SERPINE1 axis could affect the changes in the tumor immune microenvironment and the development of KIRC by affecting the expression of chemokines (CCL4, CCL5, CXCL13, and XCL2). Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that the high expression of SERPINE1 might be related to tumor immune evasion in KIRC. In summary, the current study constructing the MMP25-AS1/hsa-miR-10a-5p/SERPINE1 ceRNA network might be a novel significant prognostic factor associated with the diagnosis and prognosis of KIRC.