Stroke represents one of the most important causes of morbidity ( eighty million patients with disabling of ongoing effects of stroke at a given time, globally) and mortality (the second leading cause of death) worldwide. Innovative systems biology-based approach is likely to increase the understanding of the underpinning of acute stroke promise to enhance stroke prevention, acute treatment, and neurorehabilitation. Recent growing body of evidence with shared pathobiology with COVID-19 and the critically important role of inflammation in the context of stroke points to far-reaching consequences of acute stroke, just as in the case of COVID-19 ( post-acute event issues as well as long term issues ) . So far, stroke typically defined by late-appearing disease manifestation by the range of stroke subtypes as defined by the WHO or American Stroke Association. This definition neglects the underlying pathobiological mechanisms such as low-grade chronic inflammation and already compromised vascular system. Diseases such as stroke is hardly a simple result of a single problem, but rather a complex cascade of pathobiological processes and interactions in a complex biochemical environment. The evidence of changes in innate immunity and adaptive immunity during the index event of acute stroke and recovery over next 3-12 months can be easily elicited with simple bedside blood tests such as neutrophil-lymphocyte ratio (NLR) with well over 300 published papers including several systematic reviews and meta-analyses confirming this. Global standard operating procedures (SOP) of stroke care dictated by the national and international stroke guidelines at present. It is imperative to explore the evidence of systems biology approach in current stroke guidelines. This is likely to be a key turning point in managing stroke across the continuum (prevention, management of acute event and rehabilitation).