Purpose
People with obesity have a compromised browning capacity of adipose tissue when faced with sympathetic stimuli. This study aimed to determine whether norepinephrine treatment can enhance the induction of precursor cells from human white adipose tissue to differentiate into adipocytes that express key markers of beige adipocytes, and if there is a difference in this capacity between normal weight and overweight individuals.
Methods
Stromal vascular cells derived from subcutaneous white adipose tissue of normal weight and overweight groups were induced to differentiation, with or without norepinephrine, into adipocytes. Oxygen consumption rate, lipolysis, the expression of uncoupling protein 1 and other thermogenic genes were compared between different adiposity and treatment groups.
Results
Peroxisome proliferator activated receptor γ- coactivator-1 alpha (PGC-1 α) and uncoupling protein 1 gene expression increased significantly in the normal weight group, but not in the overweight group, with norepinephrine treatment. The increments of lipolysis and oxygen consumption rate were also higher in adipocytes from the normal weight group with norepinephrine treatment, as compared with those of the overweight group. PR domain containing protein 16 (PRDM 16) gene expression was higher in the normal weight group compared with that in the overweight group, while there were no significant changes found with norepinephrine treatment in either the normal weight or overweight group.
Conclusions
Adipogenic precursor cells derived from overweight individuals were less prone to differentiate into beige-like adipocytes when facing sympathetic stimuli than normal weight ones, resulting in the compromised sympathetic-induced browning capacity in subcutaneous white adipose tissue in overweight individuals, which occurred before the onset of overt obesity.