Background: Before starting gonadotoxic therapies, cryopreservation of mature sperm has been proposed worldwide as a method for male fertility preservation and for enabling the conception of a healthy baby with assisted reproductive technology (ART); however, these technologies are not feasible for prepubertal boys and men with spermatogenic failure. Transplantation of mesenchymal stem cells has exhibited successful therapeutic benefits in restoring spermatogenesis via gonadal graft angiogenesis, transplanted cell clonogenesis, and disordered somatic compartment recovery. This study aimed to elucidate the fertility protective effects and the underlying mechanisms of human amnion mesenchymal stem cells (hAMSCs) against busulfan-induced testis toxicity. Methods: An in vivo busulfan-induced testis toxicity mouse model and an in vitro busulfan-administered mouse Sertoli cell line were employed to evaluate the efficacy and mechanisms of hAMSC transplantation on male fertility preservation. The process of spermatogenesis was evaluated histologically, and the percentage of seminiferous tubules with vacuoles was evaluated by HE staining. Semen parameters were calculated by computer-assisted semen analysis. ELISA was employed to test the testosterone concentration and the levels of oxidative-and antioxidative-associated substances LDH, MDA, GR, SOD, GPx, and CAT. The rates of proliferation (Ki67), apoptosis (Annexin V), and ROS were measured by FACS. The fluorescence intensity of a marker of apoptosis (TUNEL) and a meiosis gene in spermatogenesis (SCP3) were detected by immunofluorescence assay. The expression of mRNA in germ cell-specific (GCS) genes (Dazl, Ddx4, and Miwi) and meiosis genes (Scp3, Cyclin A1, and Stra8) was tested by qPCR. The expression of antiapoptotic proteins (SURVIVIN and BCL2), apoptotic proteins (CASPASE3 and CASPASE9), GCS proteins (Dazl, Ddx4, and Miwi), and meiosis proteins (Scp3, Cyclin A1, and Stra8) was tested by western blotting.