1990
DOI: 10.1117/12.23524
|View full text |Cite
|
Sign up to set email alerts
|

<title>Adaptive procedure for threshold selection in directional derivative edge detectors</title>

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

1997
1997
2015
2015

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 0 publications
0
2
0
1
Order By: Relevance
“…Kanijev algoritam takođe ima i mogućnost promene vrednosti parametra σ u cilju postizanja komprimisa između dobre detekcije i dobre lokalizacije. Određivanje optimalne vrednosti praga detekcije u Kanijevom algoritmu deteljno je analizirano u literaturi, a osnovna ideja je da se odredi vrednost parametra σ koja smanjuje devijaciju gradijenta usled šuma na vrednost koja odgovara verovatnoći lažne detekcije (Amodaj & Popović, 1990).…”
Section: Detektori Bazirani Na Gradijentnim Operatorimaunclassified
“…Kanijev algoritam takođe ima i mogućnost promene vrednosti parametra σ u cilju postizanja komprimisa između dobre detekcije i dobre lokalizacije. Određivanje optimalne vrednosti praga detekcije u Kanijevom algoritmu deteljno je analizirano u literaturi, a osnovna ideja je da se odredi vrednost parametra σ koja smanjuje devijaciju gradijenta usled šuma na vrednost koja odgovara verovatnoći lažne detekcije (Amodaj & Popović, 1990).…”
Section: Detektori Bazirani Na Gradijentnim Operatorimaunclassified
“…Unfortunately this requires various heuristically set parameters which diminishes the robustness of the method. Alternatively, Amodaj and Popovic (Amodaj and Popovic 1990) iteratively fit a Rayleigh function to the lower portion of the histogram. However, the fitting may not be robust since it depends on the portion of the histogram used as well as on the initial estimate.…”
Section: Gradient Histogram Analysismentioning
confidence: 99%
“…Unfortunately this requires various heuristically set parameters which diminishes the robustness of the method. Alternatively, Amodaj and Popovic (Amodaj and Popovic 1990) iteratively fit a Rayleigh function to the lower portion of the histogram. However, the fitting may not be robust since it depends on the portion of the histogram used as well as on the initial estimate.…”
Section: Gradient Histogram Analysismentioning
confidence: 99%