Quantitative assessment of the discrimination potential of class and randomly acquired characteristics for crime scene quality shoeprints Nicole Richetelli, B.A. Footwear evidence has tremendous forensic value; it can focus a criminal investigation, link suspects to scenes, help reconstruct a series of events, or otherwise provide information vital to the successful resolution of a case. When considering the specific utility of a linkage, the strength of the connection between the source footwear and an impression left at the scene of a crime varies with the known rarity of the shoeprint itself, which is a function of the class characteristics, as well as the complexity, clarity, and quality of randomly acquired characteristics (RACs) available for analysis. To help elucidate the discrimination potential of footwear as a source of forensic evidence, the aim of this research was threefold. The first (and most time consuming obstacle) of this study was data acquisition. In order to efficiently process footwear exemplar inputs and extract meaningful data, including information about randomly acquired characteristics, a semi-automated image processing chain was developed. To date, 1,000 shoes have been fully processed, yielding a total of 57,426 RACs characterized in terms of position (θ, r, r norm), shape (circle, line/curve, triangle, irregular) and complex perimeter (e.g., Fourier descriptor). A plot of each feature versus position allowed for the creation of a heat map detailing coincidental RAC co-occurrence in position and shape. Results indicate that random chance association is as high as 1:756 for lines/curves and as low as 1:9,571 for triangular-shaped features. However, when a detailed analysis of the RAC's geometry is evaluated, each feature is distinguishable. The second goal of this project was to ascertain the baseline performance of an automated footwear classification algorithm. A brief literature review reveals more than a dozen different approaches to automated shoeprint classification over the last decade. Unfortunately, despite the multitude of options and reports on algorithm inter-comparisons, few studies have assessed accuracy for crime-scene-like prints. To remedy this deficit, this research quantitatively assessed the baseline performance of a single metric, known as Phase Only Correlation (POC), on both high quality and crime-scene-like prints. The objective was to determine the baseline performance for high quality exemplars with high signalto-noise ratios, and then determine the degree to which this performance declined as a function of variations in mixed media (blood and dust), transfer mechanisms (gel lifters), enhancement techniques (digital and chemical) and substrates (ceramic tiles, vinyl tiles, I would first like to acknowledge my chair, Dr. Jacqueline Speir. Thank you for all of your help and inspiration throughout the last two years. I have achieved more than I ever thought possible.