Background: Photobleaching can lead to significant errors in frequency-domain fluorescence lifetime imaging microscopy (FLIM). Existing correction methods for photobleaching require additional recordings and processing time and can result in additional noise. A method is introduced that suppresses the effects of photobleaching without the need for extra recordings or processing. Methods: Existing bleach correction methods and the method introduced in this report whereby the recording order of the phases is permuted were compared using numerical simulations. Results: Certain orders were found to make measurements virtually insensitive to photobleaching. At 12 recordings, errors in measured phase and modulation depth decreased by a factor 512 and 393, respectively, compared to recordings using sequential recording order. The