1997
DOI: 10.1117/12.270357
|View full text |Cite
|
Sign up to set email alerts
|

<title>Optimized optical morphological object classification</title>

Abstract: Morphological transformation provides a powerful, nonlinear means of quantitatively analyzing data sets such as images. This technique has traditionally been applied to feature location or feature removal, as in noise removal. However, the technique holds some promise for fast object classification. By viewing the transformation as a neural network, proven training techniques may be applied to optimize the performance.The critical step in applying morphology is the design of the structuring element or shape of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 1 publication
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?