Fluorescence spectroscopy and imaging has lot of applications in forensic science and biomedical areas. Sensitive detection techniques are needed when dealing with very weak fluorescence signals from the test samples. Moreover, in fluorescence based imaging, separation of fluorescence often raises challenging problems when it is overshadowed by the strong background fluorescence or when the background fluorescence lies in close wavelength range as that of sample fluorescence. In this context a sensitive Phase-Resolved (PR) imaging technique is proposed to overcome the above-mentioned major limitations. A theoretical formulation of PR imaging was carried out by incorporating the homodyne and heterodyne concept of signal processing. Theoretical analysis shown that separation and imaging of sample fluorescence can be achieved by suppressing the background fluorescence, which are in close wavelength ranges. Also, imaging of sample fluorescence can be achieved even if the fluorescence lifetime is longer or shorter than the lifetime of background fluorescence emission. Sensitivity improvement for the homodyne assisted PR imaging was carried out by incorporating the 'pi' shift method along with 'even-stepphase shift' method. An experiment was set up to validate the formulated theory. The imaging of latent fingerprints and specific bio sample such as microlitre volume of DNA in capillary was carried out using the proposed technique. Often, when fingerprints deposited on strongly fluorescing backgrounds, their separation offer a challenging problem to fingerprint experts. Similarly, in the case of fluorescence-based detection of I