This version is available at https://strathprints.strath.ac.uk/61655/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Abstract The non-contact mechanical seal of a high-speed turbopump in a liquid rocket engine operates under very harsh conditions (such as rapid start-up, cryogenic, highspeed, high-pressure and low-viscosity sealing fluid). The performance of the seal is very different to the performance under normal running conditions. In this paper, for the sake of safety, an experiment is carried out with liquid nitrogen as the sealing fluid. The experimental results with liquid nitrogen are expected to provide an equivalent seal performance as would be experienced with liquid oxygen and liquid hydrogen rocket engine. The main performance parameters, including face temperatures, leakage, face friction force, and friction coefficients, are measured in the speed-up, stable, and speed-down stages. The results show that in the speed-up stage, with rapidly increasing speed, the local face temperature rises dramatically to even higher than the vaporization temperature of liquid nitrogen, and a two-phase flow phenomenon occurs. In the start-up and stable stages, the friction coefficients are 0.25 and 0.13, respectively. After the test, it was found that the wear thickness of the rotor was 0.2 mm, and serious point corrosion appeared on the surface of the stator.