Foraging is a key driver of animal movement patterns, with specific challenges for predators which must search for mobile prey. These patterns are increasingly impacted by global changes, principally in land use and climate. Understanding the degree of flexibility in predator foraging and social strategies is pertinent to wildlife conservation under global change, including potential top-down effects on wider ecosystems. Here we propose key future research directions to better understand foraging strategies and social flexibility in predators. In particular, rapid continued advances in biologging technology are helping to record and understand dynamic behavioural and movement responses of animals, and ensuing energetic consequences, to environmental changes. Data collection can be optimised by calibrating behavioural interpretation methods in captive settings and strategic tagging decisions within and between social groups. Importantly, many species social systems are increasingly being found to be more flexible than originally described in the literature, which may be more readily detectable through biologging approaches than behavioural observation. Integrating the effects of the physical landscape and biotic interactions will be key to explaining and predicting animal movements and energetic balance in a changing world.