Continuous monitoring of flexions of the trunk via wearable sensors could help various types of workers to reduce risks associated with incorrect postures and movements. Stretchable piezo-capacitive elastomeric sensors based on dielectric elastomers have recently been described as a wearable, lightweight and cost-effective technology to monitor human kinematics. Their stretching causes an increase of capacitance, which can be related to angular movements. Here, we describe a wearable wireless system to detect flexions of the trunk, based on such sensors. In particular, we present: (i) a comparison of different calibration strategies for the capacitive sensors, using either an accelerometer or a gyroscope as an inclinometer; (ii) a comparison of the capacitive sensors’ performance with those of the accelerometer and gyroscope; to that aim, the three types of sensors were evaluated relative to stereophotogrammetry. Compared to the gyroscope, the capacitive sensors showed a higher accuracy. Compared to the accelerometer, their performance was lower when used as quasi-static inclinometers but also higher in case of highly dynamic accelerations. This makes the capacitive sensors attractive as a complementary, rather than alternative, technology to inertial sensors.