In the present work, ZnO nanoparticles were doped with varying concentration of Lanthanum (La), Cerium (Ce) and Dysprosium (Dy) using a simple and cost effective co-precipitation approach at low temperatures. The resulting powders were calcined at 500 °C for 1 hour using a muffle furnace, to produce La, Ce, Dy co-doped ZnO nanoparticles with varying stoichiometry viz. Zn0.97La0.01Ce0.01Dy0.01O, Zn0.94La0.02Ce0.02Dy0.02O, Zn0.91La0.03Ce0.03Dy0.03O, Zn0.88La0.04Ce0.04 Dy0.04O and Zn0.85La0.05Ce0.05Dy0.05O. This is a simple approach for doping and doesn’t require and complex equipment, harmful chemical or sophisticated machinery. The synthesized powders were characterized using X-Ray diffraction (XRD) and Scanning electron microscopy (SEM) for studying the structure, purity, and grain morphology. The average particle size was calculated using XRD and was found to be 35 nm, it also indicated a hexagonal wurtizite structure with no secondary peaks. A change in morphology from nanorods to nanoflowers was observed as the concentration of dopants increased. Photoluminescence (PL) spectra indicated a red shift in the absorption edge towards the visible region of solar spectrum and this was further confirmed by Diffuse Reflectance Spectra (DRS). The photocatalytic properties of undoped and La, Ce, Dy co-doped ZnO nanoparticles were observed by examining the photodegradation of Rhodamine B dye under UV irradiation. Elimination of dye color indicated the total degradation of organic molecule. The results revealed that ZnO photocatalyst with La, Ce, Dy co-doping concentration Zn0.85La0.05Ce0.05Dy0.05O exhibited the best photocatalytic performance (95%) as compared to undoped ZnO. The improved photocatalytic performance can be attributed to the increased surface oxygen vacancies and adsorption capacity. Delay in recombination of charge carriers due to creation trap states in the bandgap of ZnO further improves the photocatalytic performance of doped samples.