The role and application of bound excitons in nanoscience and technology are discussed in this chapter. Bound excitons are well studied in semiconductors, especially in gallium phosphide doped by nitrogen (GaP:N). Doping of GaP with N leads to isoelectronic substitution of the host P atoms by N in its crystal lattice and to creation of the electron trap with a giant capture cross-section. Therefore, any non-equilibrium electron in the vicinity of the trap will be captured by N atom, attracting a nonequilibrium hole by Coulomb interaction and creating the bound exciton -short-lived nanoparticle with the dimension of the order of 10nm (it is the Bohr diameter of bound exciton in GaP:N). Note, that none of nanotechnology methods are used in creation or selection of dimensions of these nanoparticles -only natural forces of electron-hole interaction and electron capture by the traps are necessary for creation of these nanoparticles. As the result we get something like neutral short-lived atom analoguea particle consisting of heavy negatively charged nucleus (N atom with captured electron) and hole. So called "zero vibrations" do not destroy possible solid phase of bound excitons having these heavy nuclei that gives an opportunity to reach their crystal state -short-lived excitonic crystal.Thus using bound excitons as short-lived analogues of atoms and sticking to some specific rules, including the necessity to build in the GaP:N single crystal the excitonic super lattice with the identity period equal to the bound exciton Bohr dimension, we get a unique opportunity to create a new solid state media -consisting from short-lived nanoparticles excitonic crystal, obviously, with very useful and interesting properties for application in optoelectronics, nanoscience and technology. The following will discuss methods of preparation and possible application of GaP excitonic crystals and nanocrystals in optoelectronics.
Preparation and Properties of GaP with Ordered Position of N ImpuritiesCrystals that are grown under conventional laboratory conditions naturally contain a varied assortment of defects such as displaced host and impurity atoms, vacancies, dislocations, and impurity clusters. These defects result from relatively rapid growth conditions and inevitably lead to the deterioration of optical and mechanical properties of the crystal. For instance, defects in freshly-prepared GaP:N single crystals completely suppress their luminescence at room temperature, which is very bright in the same, but aged perfect crystal.With the lapse of time driving forces such as impurity diffusion, strain relaxation, and thermodynamic minimization of the free energy associated with properly directed chemical bonds can result in an ordered distribution of impurity and host atoms. Evaluation of the characteristic time of such reordering, based on the known Ising model, suggests that the time for the substitution reaction associated with N diffusion along P sites in GaP:N is about 15 years at room temperature [1]. Accordingly, observations ...