Scintillators, which can convert high‐energy ionizing radiation into visible light, have been serving as the core component in radiation detectors for more than a century of history. To address the increasing application demands along with the concern on nuclear security, various strategies have been proposed to develop a next‐generation scintillator with a high performance in past decades, among which the novel approach via structure control has received great interest recently due to its high feasibility and efficiency. Herein, the concept of “structure engineering” is proposed for the exploration of this type of scintillators. Via internal or external structure design with size ranging from micro size to macro size, this promising strategy cannot only improve scintillator performance, typically radiation stopping power and light yield, but also extend its functionality for specific applications such as radiation imaging and therapy, opening up a new range of material candidates. The research and development of various types of structured scintillators are reviewed. The current state‐of‐the‐art progresses on structure design, fabrication techniques, and the corresponding applications are discussed. Furthermore, an outlook focusing on the current challenges and future development is proposed.