Currently electroluminescent devices, operated by alternating current (AC-EL) on film, paper or textile are based on a capacitor with one transparent electrode and one generally non-transparent, highly conductive electrode and a light-emitting dielectric layer in-between. The light-emitting pigments are mostly based on doped zinc sulfide. Currently available commercial products contain encapsulated pigments dispersed in organic solvents. Those dispersions allow AC-EL-devices illuminating solitary in the colors white, green, blue-green, blue and orange. Blending those pigments leads to numerous new colors however, always linked to loss of brightness in the final device. In this research work the combination of fluorescent organic and inorganic dyestuffs with inorganic EL-phosphors was investigated. The AC-EL-devices were all based on textile materials; all dispersions were free of organic solvents. Special focus was directed to the concentration of dyes in an additional layer within the EL-capacitor as well as the thickness and particularly the positioning of the layer. In the result colors were achieved, which cannot be found by blending the phosphors, such as yellow and red. In addition, depending on the type of added fluorescent dyestuff layer, the brightness could be increased substantially.