In intrinsic magnetic semiconductors, the absorption of a single photon can generate a spin polaron, whose magnetic moment reaches many thousands of Bohr magnetons [1,2]. Here we investigate photoinduced spin polarons, using Monte Carlo simulations. In antiferromagnetic semiconductors, photoinduced spin polarons are most efficiently generated in the whole temperature interval up to the phase transition, whereas in ferromagnetic semiconductors much larger spin polarons can be photoinduced, but only around the phase transition temperature. Because Monte Carlo simulations are computationally expensive, we developed an analytical model, based on the Weiss field theory. Although the Weiss model does not provide as much information as a Monte Carlo simulation, such as spin texture and fluctuations, it yields formulas that can be used to estimate instantly the expected photoinduced spin polaron size in many intrinsic magnetic semiconductors.