IntroductionVarious climatological and lunar cycle parameters have a direct impact on animal reproduction, and in the case of the avian species, spermatozoa are extremely sensitive to heat stress. These parameters could influence sperm freezability, which will ultimately affect post-thawing semen quality, being sperm motility in roosters a relevant indicator of this quality as it is highly related to fertility. Therefore, the objective of the present study is to determine which are the climatological and lunar cycle parameters that have a greater effect on sperm freezability in roosters.MethodsSperm was obtained from 16 Utrerana breed roosters and a total of 27 replicates were performed. A pool was made with those ejaculates that met the minimum quality criteria for each replicate, and four freezing–thawing samples per replicate were analyzed. The straws were thawed, and sperm motility was evaluated, classifying the results obtained into four seminal quality groups according to the guidelines of the Food and Agriculture Organization of the United Nations (Group 1: Good, Group 2: Satisfactory, Group 3: Acceptable but undesirable and Group 4: Unsatisfactory). The following traits were recorded for each day of semen collection: maximum temperature, minimum temperature, maximum barometric pressure, minimum barometric pressure, maximum gust, wind direction, mean wind speed, sunshine hours, rainfall, moon phase, and percentage of illuminated lunar surface over the total area.ResultsA discriminant canonical analysis was performed to determine which of these parameters offered the most information when classifying an ejaculate in each quality group, with minimum temperature, the new moon as moon phase, minimum barometric pressure, and rainfall being the most significant variables.DiscussionAccording to the results obtained, semen quality decreases when temperature and precipitation are lower, pressure is higher, and when there is a new moon phase. Therefore, these environmental conditions should be avoided for sperm collection and processing.