This research studies the potential of frozen low lunar orbits to be used in the design of constellations for global and regional communication or navigation. We introduce a robust two-stage approach to the frozen low lunar orbit design based on the successive application of non-gradient techniques, the Bayesian optimization and the Nelder–Mead method. The developed methodology has a number of advantages over existing numerical design techniques and allows revealing orbits with the periodic behavior of the eccentricity vector over long propagation intervals in the full dynamical model. By leveraging a convenient nomogram with constellation visibility parameters and lower bound coverage curves, we have identified most suitable low-altitude orbital configurations of Walker type and then adjust them to be frozen. The frozenness condition can be achieved without changing the orientation of orbital planes. Visibility and coverage metrics (multiplicity of continuous coverage for specified sites, polar regions, or the whole lunar surface; position dilution of precision) of candidate constellations are analyzed. Several promising designs of frozen constellations in near-circular low lunar orbits are singled out. The frozen orbit stability and the station-keeping cost are discussed.