Purpose of review
Mechanical ventilation may have adverse effects on diaphragm and lung function. Lung- and diaphragm-protective ventilation is an approach that challenges the clinician to facilitate physiological respiratory efforts, while maintaining minimal lung stress and strain. Here, we discuss the latest advances in monitoring and interventions to achieve lung- and diaphragm protective ventilation.
Recent findings
Noninvasive ventilator maneuvers (P0.1, airway occlusion pressure, pressure-muscle index) can accurately detect low and excessive respiratory efforts and high lung stress. Additional monitoring techniques include esophageal manometry, ultrasound, electrical activity of the diaphragm, and electrical impedance tomography. Recent trials demonstrate that a systematic approach to titrating inspiratory support and sedation facilitates lung- and diaphragm protective ventilation. Titration of positive-end expiratory pressure and, if available, veno-venous extracorporeal membrane oxygenation sweep gas flow may further modulate neural respiratory drive and effort to facilitate lung- and diaphragm protective ventilation.
Summary
Achieving lung- and diaphragm-protective ventilation may require more than a single intervention; it demands a comprehensive understanding of the (neuro)physiology of breathing and mechanical ventilation, along with the application of a series of interventions under close monitoring. We suggest a bedside-approach to achieve lung- and diaphragm protective ventilation targets.