Lung-Centric Feature Analysis for Accurate Pneumonia Detection in Chest X-RAY Images
Najah Alsubaie,
Tahani Alqahtani,
Syarifah Bahiyah Rahayu
Abstract:Pneumonia, a lung inflammation and consolidation disorder, poses diagnostic challenges necessitating accurate detection. This paper introduces an innovative automated approach using segmented lung morphology and texture attributes from Chest X-ray (CXR) images. Unlike conventional methods analyzing the entire CXR, our focus narrows to segmented lung regions. Discriminative ranking of extracted features enhances the categorization of CXR images into pneumonia and normal cases. Diverse machine learning classifie… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.