Background:
Neonate lung injury is a common phenomenon after perinatal asphyxia
Objective:
To evaluate proteomic profiles of exosomes isolated from lung injury offspring serum after perinatal asphyxia.
Methods:
Serum samples were collected at 12 h, 24 h, and 72 h after birth in neonates with perinatal asphyxia-induced lung injury. Exosomes were isolated, and the concentration and size distribution were assessed. The exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected by Western blot. The exosome proteins were evaluated by quantitative proteomics using a tandem mass tag (TMT). All the identified proteins were submitted to the Weighted Gene Co-Expression Network Analysis (WGCNA), GO function, and KEGG pathway analysis. A protein-protein interaction network (PPI) was utilized to identify hub proteins with the Cytohubba plugin of Cytoscape.
Results:
The exosomes were round or oval vesicular structures at a diameter range of 100-200 nm, and the size distribution was standard and consistent. Exosome surface markers CD9, CD63, CD81, HSP70, and TSG101 were detected. 444 out of 450 proteins were mapped with gene names. A brown module containing 71 proteins was highly linked with the 12 h phenotype and was predominantly concentrated in lipoprotein and complement activation. The top 10 proteins, APOA1, APOB, APOE, LPA, APOA2, CP, C3, FGB, FGA, and TF, were determined as hub proteins.
Conclusion:
The present study demonstrates comprehensive information for understanding molecular changes of lung injury following perinatal asphyxia, which provides a reliable basis for screening potential biomarkers and therapeutic targets in the clinic.