Abbreviations: computed tomography, CT; magnetic resonance imaging, MRI; positron emission tomography, PET; Global Initiative for chronic Obstructive Lung Disease, GOLD; quantitative CT, QCT; Hounsfield Units, HU; percentage of low attenuation area, %LAA; relative area of lung less than -950 HU, RA950; Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints, ECLIPSE; forced expiratory volume in 1 second, FEV1; forced vital capacity, FVC.
Journal of the COPD Foundation(GOLD) stage may have substantial, little, or no emphysema. Discrete subphenotypes of COPD include emphysema of varying morphologic appearance, large airway abnormality and small airway obstruction. Increasing awareness of the heterogeneity of COPD has led to increased use of CT to characterize COPD for purposes of genetic evaluation and identification of specific subgroups which may be amenable to therapeutic trials. 1-3 While visual assessment is important in determining the presence and character of emphysema, the last decade has been characterized by increasing use of quantitative imaging to provide precise estimates of the severity and distribution of emphysema, gas trapping and airway wall thickening. Several large cohorts of cigarette smokers have now been quite extensively characterized by CT, resulting in increased knowledge of the clinical correlates of quantitative CT parameters. [4][5][6] The purpose of this paper is to present the substantial contribution that imaging has made to our understanding of COPD over the past 10 years.
AbstractComputed tomography (CT) has contributed substantially to our understanding of COPD over the past decade. Visual and quantitative assessments of CT in COPD are complementary. Visual assessment should provide assessment of centrilobular, panlobular and paraseptal emphysema, airway wall thickening, bronchiectasis, findings of respiratory bronchiolitis, and enlargement of the pulmonary artery. Quantitative CT permits evaluation of severity of emphysema, airway wall thickening, and expiratory air trapping, and is now being used for longitudinal evaluation of the progression of COPD. Innovative techniques are being developed to use CT to characterize the pattern of emphysema and smoking-related respiratory bronchiolitis. Magnetic resonance imaging (MRI) and positron emission tomography PET-CT are useful research tools in the evaluation of COPD.