Lung Segmentation of Chest Radiograph Using Circular Window Based Local Contrast Thresholding (CWLCT) and Adaptive Median Outlier (CWAMO)
Dnyaneshwar Kanade,
Jagdish Helonde,
Prakash Burade
et al.
Abstract:Certain chest illnesses, such as TB, adenocarcinoma, squamous cell carcinoma, large cell carcinoma, atelectasis, etc., can be diagnosed in chest radiographs, and the development of a CAD system relies in part on accurate lung segmentation. In order to partition the lungs in chest radiographs, this work introduces an unsupervised learning approach based on a circular window and local thresholding. The procedure involves pre-processing, a preliminary estimate of the lung field, and the elimination of noise. Imag… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.