Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Autism spectrum disorder (ASD) is characterized by deficits in communication, social interaction, and repetitive and stereotyped behaviors, with no specific drug therapy available. Studies have found that cannabidiol (CBD) can improve hyperactive and cognitive symptoms in children with ASD. However, little is known about the effect of CBD in combination with other medications, such as risperidone (RISP). This study aimed to evaluate the behavioral and biochemical effects of CBD in animals using a valproic acid (VPA)‐induced ASD animal model. VPA was administered in pregnant Wistar rats on Day 12.5 of gestation to induce the ASD model. From the 10th to the 16th postnatal day (PND), the neurodevelopment of the animals was assessed through eye‐opening, olfactory discrimination, and negative geotaxis behavioral tests. From PNDs 9 to 54, the animals were weighed. They were treated for 21 days with CBD alone (100 mg/kg, by gavage, twice a day) or in combination with RISP (0.1 mg/kg, by gavage, once a day). At PND 55, the animals were evaluated in social interaction and locomotor activity experiments. Finally, after behavioral assessment, the animals were euthanized, the brain was isolated, and oxidative stress parameters were evaluated in the hippocampus and cortex posterior. Animals exposed to VPA showed neurodevelopmental delays in opening their eyes, difficulties in turning around their axis, and took longer time to find the original nest when compared to control animals. They also exhibited impaired sociability and reduced exploratory activity, which indicates model impairments. Interestingly, animals exposed to VPA treated with CBD + RISP significantly improved sociability parameters, whereas isolated CBD did not affect this parameter. In the biochemical analysis, a significant decrease in the hippocampal sulfhydryl content was noted in the CT + CBD group and an increase in the VPA + CBD group. In conclusion, these results suggest that CBD, in combination with RISP, may be an interesting pharmacological approach to reducing ASD‐related symptoms.Summary: Besides the increased prevalence of ASD cases in recent years, there are no medications to improve the central symptoms of autism. Numerous studies discuss CBD as an important medication for improving ASD symptoms; however, it is not known how CBD interacts with commonly used drugs in ASD individuals, such as RISP. This study demonstrated that CBD therapy, only when combined with RISP, improved sociability in a VPA‐induced ASD animal model.
Autism spectrum disorder (ASD) is characterized by deficits in communication, social interaction, and repetitive and stereotyped behaviors, with no specific drug therapy available. Studies have found that cannabidiol (CBD) can improve hyperactive and cognitive symptoms in children with ASD. However, little is known about the effect of CBD in combination with other medications, such as risperidone (RISP). This study aimed to evaluate the behavioral and biochemical effects of CBD in animals using a valproic acid (VPA)‐induced ASD animal model. VPA was administered in pregnant Wistar rats on Day 12.5 of gestation to induce the ASD model. From the 10th to the 16th postnatal day (PND), the neurodevelopment of the animals was assessed through eye‐opening, olfactory discrimination, and negative geotaxis behavioral tests. From PNDs 9 to 54, the animals were weighed. They were treated for 21 days with CBD alone (100 mg/kg, by gavage, twice a day) or in combination with RISP (0.1 mg/kg, by gavage, once a day). At PND 55, the animals were evaluated in social interaction and locomotor activity experiments. Finally, after behavioral assessment, the animals were euthanized, the brain was isolated, and oxidative stress parameters were evaluated in the hippocampus and cortex posterior. Animals exposed to VPA showed neurodevelopmental delays in opening their eyes, difficulties in turning around their axis, and took longer time to find the original nest when compared to control animals. They also exhibited impaired sociability and reduced exploratory activity, which indicates model impairments. Interestingly, animals exposed to VPA treated with CBD + RISP significantly improved sociability parameters, whereas isolated CBD did not affect this parameter. In the biochemical analysis, a significant decrease in the hippocampal sulfhydryl content was noted in the CT + CBD group and an increase in the VPA + CBD group. In conclusion, these results suggest that CBD, in combination with RISP, may be an interesting pharmacological approach to reducing ASD‐related symptoms.Summary: Besides the increased prevalence of ASD cases in recent years, there are no medications to improve the central symptoms of autism. Numerous studies discuss CBD as an important medication for improving ASD symptoms; however, it is not known how CBD interacts with commonly used drugs in ASD individuals, such as RISP. This study demonstrated that CBD therapy, only when combined with RISP, improved sociability in a VPA‐induced ASD animal model.
Alzheimer's disease (AD) and Parkinson's diseases (PD) are the two most common progressive neurodegenerative diseases with limited knowledge on their cause and, presently, have no cure. There is an existence of multiple treatment methods that target only the symptoms temporarily and do not stop the progression or prevent the onset of disease. Neurodegeneration is primarily attributed to the natural process of aging and the deleterious effects of heightened oxidative stress within the brain, whether via direct or indirect mechanisms. Emerging evidence suggests that certain nutritional aspects play a crucial role in the prevention and management of neurodegenerative diseases. Lutein, a dietary carotenoid, has been studied for its antioxidant properties for more than a decade with several applications against age‐related macular degeneration. It is high antioxidant potential and selective accumulation in the brain makes it a versatile compound for combatting various neurodegenerative diseases. In this review, the studies exhibiting neuroprotective properties of lutein against neurodegenerative conditions, more specifically AD and PD in various model systems as well as clinical observations have been reviewed. Accordingly, the concerns associated with lutein absorption and potential strategies to improve its bioavailability have been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.