“…Since the biological effect of PPAR activation is directly related to the metabolism of lipids and carbohydrates, the main axis of biomarkers studied are the genes containing in their promoter the PPRE and the enzymes/proteins encoded by these genes in the main organs controlling the energetic homeostasis of the organism; the biomarkers used to monitoring PPAR activation through pesticides could be summarized as follows: the biological activation of the PPAR has been observed in adipose tissue by DDT, dieldrin, diazonin, fenthion, and fibronil through the accumulation of lipids as an effect of adipocyte maturation [22,33,38,50]. Also this activation has been observed with organophosphate flame retardants (OPFRs) in inducing adipogenesis as 2-ethylhexyl diphenyl phosphate (EHDPP) [114] and triphenyl phosphate (TPHP) [115]; however, by exploring the mechanism by which pesticides enable this accumulation, it has been shown that the role of PPARγ in this phenomenon is important and consistent, but not unique, as accumulation of lipids is still observed despite blocking the receptor, as in the case of qhizalofop-ethyl [39]; and even the direct role of other receptors in lipid accumulation has been reported, as in the case of dioxin: 2,3,7,8-tetrachlorodibenzo-p-dioxin, which is antagonistic to the aryl hydrocarbon receptor (AhR) and prevents lipid accumulation in association with a decrease in PPARγ [116]. Likewise, the mechanism of lipid accumulation has been shown to be 23 PPAR Research not only due to a process of direct activation of nuclear receptors, as is the case with chlorantraniliprole and pyraclostrobin, which increase oxidative stress in the ER and mitochondria, accordingly, caused by an increase in lipid peroxidation and ROS, and decrease the availability of ATP [23,40].…”